Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

نویسندگان

  • Chenggang Zhu
  • Bilin Ge
  • Ru Chen
  • Xiangdong Zhu
  • Lan Mi
  • Jiong Ma
  • Xu Wang
  • Fengyun Zheng
  • Yiyan Fei
چکیده

Total internal reflection (TIR) is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane) is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD) in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm² with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial resolution improvement of scanning microscopy based on thermal lens spectroscopy with a total-internal-reflection arrangement.

In scanning microscopy by total internal reflection with thermal lens spectroscopy, its spatial resolution depends on the distance between the sample and a converging lens, which corresponds to the objective lens in an ordinary optical microscope. It was found that the resolution was best when the signal induced by the thermal lens effect was maximum. The distance was precisely adjusted by moni...

متن کامل

Enhanced signal coupling in wide-field fiber-coupled imagers.

Some high-performance imaging systems, including wide angle "monocentric" lenses made of concentric spherical shells, form a deeply curved image surface coupled to focal plane sensors by optical fiber bundles with a curved input and flat output face. However, refraction at the angled input facet limits the range of input angles, even for fiber bundles with numerical aperture 1. Here we investig...

متن کامل

High-speed terahertz reflection three-dimensional imaging using beam steering.

High-speed terahertz (THz) reflection three-dimensional (3D) imaging is demonstrated using electronically-controlled optical sampling (ECOPS) and beam steering. ECOPS measurement is used for scanning an axial range of 7.8 mm in free space at 1 kHz scan rate while a transverse range of 100 × 100 mm(2) is scanned using beam steering instead of moving an imaging target. Telecentric f-θ lenses with...

متن کامل

Liquid crystal lens focusing in monocentric multiscale imagers

In multiscale imagers a single objective lens is shared by multiple secondary optical systems, so that a high-resolution wide-angle image is acquired in overlapping fields sensed by multiple conventional focal planes. In the “AWARE2” 2 Gigapixel imager, F/2.4 optics cover a 120 degree field of view using a monocentric glass primary lens shared by 221 molded plastic subimagers, each with a 14 Me...

متن کامل

Total internal reflection photonic crystal prism.

An integrated total internal reflection prism is demonstrated that generates a transversely localized evanescent wave along the boundary between a photonic crystal and an etched out trench. The reflection can be described by either the odd symmetry of the Bloch wave or a tangential momentum matching condition. In addition, the Bloch wave propagates through the photonic crystal in a negative ref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018